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TD : HACHAGE POLYNOMIAL 

 
Dans ce TD, vous allez concevoir vos propres tables de hachage afin de comprendre 
concrètement comment un hachage polynomial répartit des chaînes de caractères et 
pourquoi de « mauvais » choix de paramètres (base, taille de table paire ou puissance de 2) 
peuvent cibler des régularités dans les données et des emplacements vides. 
 
Vous implémenterez la stratégie par chaînage en instrumentant chaque opération (insertion, 
recherche, suppression). Vous mettrez également en œuvre une politique de 
redimensionnement automatique (seuil 70 %). 

I) JEUX DE DONNÉES UTILISÉ 

Il y a trois listes de jeux de données sous forme de chaines de caractères : 
- jeu_unique : contient 5000 clés distinctes, 
- jeu_melange : contient 5000 clés avec 30 % de doublons 
- jeu_regulier : contient environ 5000 clés avec de nombreuses fins identiques sur 

les derniers caractères pairs. 

 

 
 

Vous pouvez visualiser ces données à l’aide des fonctions Affiche_Repartion_Donnees() 
et Affiche_Repartion_Derniers_Caracteres() qui sont commentées par défaut dans le 
fichier source. 
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II) RAPPELS SUR LE HACHAGE POLYNOMIAL 

Le principe du hachage polynomial est d’encoder une chaîne de caractère en une valeur 
numérique (code de hachage) en utilisant la valeur du code ASCII/Unicode de chaque 
caractère. Elle consiste à itérer sur les caractères un par un et de maintenir une somme 
courante. À chaque caractère, on multiplie la somme par une constante, on ajoute le 
nouveau caractère, puis, si nécessaire, on prend un modulo pour éviter les dépassements : 
 

Hachage polynomial 

1. Encoder chaque caractère en un entier (ASCII/Unicode) 
2. Itérer sur la chaîne : on maintient une valeur k 
3. À chaque caractère de code x, on met à jour : 

ki = (ki-1∙B + xi) mod M 

B : base (une constante > taille de l’alphabet, ex. 131 ou 257, en évitant les 
puissances de 2). 
M = modulo (grand entier pour éviter les débordements et réduire les collisions) 
(on peut prendre un grand nombre premier M = 1 000 000 007, ou bien s’appuyer 
sur le débordement 64 bits non signé en prenant M = 264) 

 
4. Pour obtenir un numéro de compartiment entre 0 et n-1, on peut appliquer 

ensuite la fonction de compression à base de modulo : 

h(k) = k mod n 
 

III) HACHAGE POLYNOMIAL 

Dans cette partie, on utilise le fichier « TD1.1_CodeHash.py »  
 

III.1. Code de hachage 

Écrire la fonction hash_poly(s : str, B : int, M :int) qui prend en entrée une chaîne 
de caractères s, une base B et un modulo M et qui retourne un entier en utilisant la méthode 
du hachage polynomial. Utiliser la fonction ord() afin d’avoir la valeur Unicode d’un 
caractère. 
 
Vérifier :  hash_poly("abc",257,10**9+7) = 6432038 
  hash_poly("",257,101) = 0 
 

III.2. Effet d’une régularité des données avec un mauvais choix de (B, M) 

On prend M=32 et B=128. 
 
1. Calculer les codes de hachage de « abc », « bc » et « c ». Que remarquez-vous ? 

Expliquer. 
2. Afficher la distribution des codes de hachage des jeux de données avec la fonction 

Distribution_Code_Hash(valeurs, M, B) (implémentée dans la bibliothèque 
malib_td1) 

3. Comparer avec M=33 et B=128. 
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IV) TABLE DE HACHAGE AVEC CHAÎNAGE  

Dans cette partie, on utilise le fichier « TD1.2_TableHachage_Chainage.py ». 
 

IV.1. Fonction de hachage {code hash + compression} 

1. Recopier votre code de la fonction hash_poly() dans le fichier. 
 
2. Écrire la fonction de compression f_Compression(code, n) prenant en entrée le code 

du hash, le nombre de compartiments n de la table de hachage et retournant l’indice de 
l’emplacement où stocker la valeur. 

 
3. Écrire la fonction f_Hachage(cle, B, M, n) permettant d’appliquer la fonction de 

hachage {hash _code + compression} sur une clé de type chaîne de caractère et de 
retourner le hash correspondant. 

 
Tester avec n = 10007 : f_Hachage("abc",257,10**9+7,10000+7) = 7544 

    f_Hachage("abcdefg",257,10**9+7,10000+7) = 6625 
 
4. Créer la table de hachage vide : table_hachage = [[] for i in range(n)] 
 

IV.2. Insertion d’un élément 

1. Écrire la fonction f_Insert(element, table) qui ajoute un élément (chaîne de 
caractères) par chaînage et retourne le facteur de charge courant. Dans cette version, on 
accepte que des doublons puissent être stockés. 

 
Vous pourrez utiliser une variable globale n_total pour suivre le nombre total d’éléments 
enregistrés dans la table. 
 
Tester : >>> f_Insert("user8346", table_hachage) 

9.9930048965724e-05 
>>> table_hachage[3514] 
['user8346'] 
>>> f_Insert("user9490", table_hachage) 
0.000199860097931448 
>>> table_hachage[3514] 
['user8346', 'user9490'] 
>>> f_Insert("user9490", table_hachage) 
0.00029979014689717197 
>>> table_hachage[3514] 
['user8346', 'user9490', 'user9490'] 

 
2. Modifier votre fonction pour gérer les doublons et faire en sorte que la table de hachage 

n’en contienne pas. 
 
Tester pour vérifier que la gestion des doublons fonctionne correctement. 
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IV.3. Recherche d’un élément 

La position d’un élément dans la table de hachage est donnée par une liste de la forme : 

[indice_compartiment, indice_debordement] 

… où indice_compartiment donne la position de la valeur recherchée dans la table de 
hachage et indice_debordement la position dans la sous-liste où sont enregistrées les 
collisions. 
 
1. Écrire la fonction f_Recherche(element, table) qui retourne la position de l’élément 

dans la table, s’il existe, et qui retourne None sinon. 
 
 
Tester :  >>> f_Recherche("user8346", table_hachage) 

[3514, 0] 
>>> f_Recherche("user9490", table_hachage) 
[3514, 1] 
>>> f_Recherche("abc", table_hachage) 
-1 

 

IV.4. Suppression d’un élément 

1. Écrire la fonction f_Supprime(element, table) qui supprime un élément de la table, 
et qui retourne le facteur de charge après la suppression ou retourne -1 si l’élément n’a 
pas été trouvé. 

 
Tester :  >>> table_hachage[3514] 

['user8346', 'user9490'] 
>>> f_Supprime("user9490", table_hachage) 

  >>> 0.00029979014689717197 
>>> table_hachage[3514] 
['user8346'] 
>>> f_Supprime("abs", table_hachage) 
-1 

 

IV.5. Distribution du nombre de collisions 

1. Écrire une fonction f_RemplirTable(jeu,table) qui insère la totalité des données d’un 
jeu dans une table. 
 

2. Remplir trois tables : table_jeu_unique (avec le jeu jeu_unique), table_melange 
(avec le jeu de données jeu_melange) et table_regulier (avec le jeu_regulier). 

 
3. Afficher la distribution du nombre de collisions de chaque table avec la fonction 

Distribution_Compartiments(nbr_par_case) implémentée dans la librairie 
malib_td1. Ici nbr_par_case est la liste des nombres d’élément par compartiment. 

 
3. Commenter les résultats obtenus. 
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Observation attendue :  

 
IV.6. Gestion du facteur de charge 

1. Augmenter le nombre de données de chaque jeu en modifiant la taille des jeux de 
données x10. 
 

2. Afficher la distribution des du nombre de collisions de chaque table comme 
précédemment. 

 
On observe que les compartiments se remplissent davantage et que comme précédemment 
le jeu unique concentre davantage de collisions que les autres jeux : 
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3. Écrire la fonction f_NbrPremier(val) qui retourne le premier nombre premier 
strictement supérieur à la valeur de val. 
 

Tester : >>> f_NbrPremier(256)  >>> f_NbrPremier(10000) 
  257     10007 
 
4. Écrire la fonction f_Insert_avec_charge(element, table) qui insère un élément en 

maintenant un facteur de charge inférieur à 70% (en doublant la capacité n au plus 
proche nombre premier supérieur à 2∙nlors d’un dépassement). 

 
5. Écrire une fonction f_RemplirTableAvecCharge(jeu,table) qui insère la totalité des 

données d’un jeu dans une table avec gestion du facteur de charge. 
 
6. Refaire l’expérience de remplissage des trois tables en utilisant cette fois-ci la fonction 

f_Insert_avec_charge(element, table) et vérifier que la répartition des données 
dans les compartiments s’améliore. 

 

 
 
Vous pouvez faire la suite si vous avez encore du temps ! 

 

IV.7. Complexité des opérations d’insertion 

L’utilisation des listes dans nos fonctions d’insertion ne permet pas de prendre en compte 
les délais d’insertion pour mesurer la complexité en temps car les listes python sont 
optimisées et gérées dynamiquement.  
 
Pour avoir une meilleure image de ce que représente en réalité le temps d’insertion dans la 
table de hachage, nous allons nous baser sur le nombre de valeurs déjà enregistrées dans un 
compartiment de la table de hachage avant l’insertion d'une nouvelle valeur. 
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L’objectif est de remplir une table de taille n = 10007 avec 300 000 valeurs issues du jeu 
unique, et d’enregistrer le nombre de cases du compartiment où cette valeur sera placée à 
chaque tentative d’insertion. Cette métrique nous donnera une idée de la complexité du 
temps d’insertion dans la table de hachage car la complexité dépend du temps mis lors de la 
vérification des doublons (et plus il y a de cases remplies dans un compartiment, plus cette 
vérification sera longue). 
 
1. Créer un jeu de données de 100k valeurs en modifiant la taille du jeu unique. 

 
2. Créer une fonction f_CountRemplirTable(jeu, table) qui permet de remplir la table 

en renvoyant deux listes : alpha et count, contenant pour la première la valeur du 
facteur de charge à chaque insertion d’un élément, et pour la seconde le nombre de 
cases déjà remplies dans le compartiment cible lors d’une insertion. 

 
3. Créer une fonction f_MoyenneMobile(liste, fenetre) qui retourne une liste 

contenant les moyennes des valeurs contenues dans la liste, sur une fenêtre de taille 
donnée. 
Vous pouvez utiliser np.mean(liste[x:x+y]) pour calculer la moyenne des données de 
la liste sur l’intervalle [x,x+y]. 
Vous ferez attention à ce que la liste retournée ait la même longueur que la liste traitée 
(ajouter des 0 au début de la liste avant de la retourner). 

 
4. Afficher les courbes de la moyenne mobile (prendre par exemple 1000) du nombre de 

cases lors des opérations d’insertion en fonction du taux de charge de la table. 
 
Résultat attendu (sur 300k valeurs) : 

 
 

Cette courbe semble être en O(1 + ). Pour la comparer à ce qu’on aurait dans le pire des 
cas, on va refaire la même mesure mais sur un jeu de donné qui ne contient que des 
doublons (pour forcer les collisions). 
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5. Créer un jeu de la même taille de précédemment, et utiliser la fonction d’insertion qui ne 
gère pas les doublons pour remplir la table (afin de forcer le remplissage du 
compartiment) en effectuant les mêmes mesures que précédemment. Afficher les 
courbes dans les deux cas. 

 
Résultat attendu : 
 

 
Quelle est la complexité de l’opération d’insertion dans le pire des cas ? 
 

6. La fonction de hachage utilisée garantit-elle une complexité en O(1 + ) sur 
l’insertion comme le ferait une fonction universelle ? 

 


