
TD : HACHAGE POLYNOMIAL

1

TD : HACHAGE POLYNOMIAL

Dans ce TD, vous allez concevoir vos propres tables de hachage afin de comprendre
concrètement comment un hachage polynomial répartit des chaînes de caractères et
pourquoi de « mauvais » choix de paramètres (base, taille de table paire ou puissance de 2)
peuvent cibler des régularités dans les données et des emplacements vides.

Vous implémenterez la stratégie par chaînage en instrumentant chaque opération (insertion,
recherche, suppression). Vous mettrez également en œuvre une politique de
redimensionnement automatique (seuil 70 %).

I) JEUX DE DONNÉES UTILISÉ

Il y a trois listes de jeux de données sous forme de chaines de caractères :
- jeu_unique : contient 5000 clés distinctes,
- jeu_melange : contient 5000 clés avec 30 % de doublons
- jeu_regulier : contient environ 5000 clés avec de nombreuses fins identiques sur

les derniers caractères pairs.

Vous pouvez visualiser ces données à l’aide des fonctions Affiche_Repartion_Donnees()
et Affiche_Repartion_Derniers_Caracteres() qui sont commentées par défaut dans le
fichier source.

TD : HACHAGE POLYNOMIAL

2

II) RAPPELS SUR LE HACHAGE POLYNOMIAL

Le principe du hachage polynomial est d’encoder une chaîne de caractère en une valeur
numérique (code de hachage) en utilisant la valeur du code ASCII/Unicode de chaque
caractère. Elle consiste à itérer sur les caractères un par un et de maintenir une somme
courante. À chaque caractère, on multiplie la somme par une constante, on ajoute le
nouveau caractère, puis, si nécessaire, on prend un modulo pour éviter les dépassements :

Hachage polynomial

1. Encoder chaque caractère en un entier (ASCII/Unicode)
2. Itérer sur la chaîne : on maintient une valeur k
3. À chaque caractère de code x, on met à jour :

ki = (ki-1∙B + xi) mod M

B : base (une constante > taille de l’alphabet, ex. 131 ou 257, en évitant les
puissances de 2).
M = modulo (grand entier pour éviter les débordements et réduire les collisions)
(on peut prendre un grand nombre premier M = 1 000 000 007, ou bien s’appuyer
sur le débordement 64 bits non signé en prenant M = 264)

4. Pour obtenir un numéro de compartiment entre 0 et n-1, on peut appliquer

ensuite la fonction de compression à base de modulo :

h(k) = k mod n

III) HACHAGE POLYNOMIAL

Dans cette partie, on utilise le fichier « TD1.1_CodeHash.py »

III.1. Code de hachage

Écrire la fonction hash_poly(s : str, B : int, M :int) qui prend en entrée une chaîne
de caractères s, une base B et un modulo M et qui retourne un entier en utilisant la méthode
du hachage polynomial. Utiliser la fonction ord() afin d’avoir la valeur Unicode d’un
caractère.

Vérifier : hash_poly("abc",257,10**9+7) = 6432038
 hash_poly("",257,101) = 0

III.2. Effet d’une régularité des données avec un mauvais choix de (B, M)

On prend M=32 et B=128.

1. Calculer les codes de hachage de « abc », « bc » et « c ». Que remarquez-vous ?

Expliquer.
2. Afficher la distribution des codes de hachage des jeux de données avec la fonction

Distribution_Code_Hash(valeurs, M, B) (implémentée dans la bibliothèque
malib_td1)

3. Comparer avec M=33 et B=128.

TD : HACHAGE POLYNOMIAL

3

IV) TABLE DE HACHAGE AVEC CHAÎNAGE

Dans cette partie, on utilise le fichier « TD1.2_TableHachage_Chainage.py ».

IV.1. Fonction de hachage {code hash + compression}

1. Recopier votre code de la fonction hash_poly() dans le fichier.

2. Écrire la fonction de compression f_Compression(code, n) prenant en entrée le code

du hash, le nombre de compartiments n de la table de hachage et retournant l’indice de
l’emplacement où stocker la valeur.

3. Écrire la fonction f_Hachage(cle, B, M, n) permettant d’appliquer la fonction de

hachage {hash _code + compression} sur une clé de type chaîne de caractère et de
retourner le hash correspondant.

Tester avec n = 10007 : f_Hachage("abc",257,10**9+7,10000+7) = 7544

 f_Hachage("abcdefg",257,10**9+7,10000+7) = 6625

4. Créer la table de hachage vide : table_hachage = [[] for i in range(n)]

IV.2. Insertion d’un élément

1. Écrire la fonction f_Insert(element, table) qui ajoute un élément (chaîne de
caractères) par chaînage et retourne le facteur de charge courant. Dans cette version, on
accepte que des doublons puissent être stockés.

Vous pourrez utiliser une variable globale n_total pour suivre le nombre total d’éléments
enregistrés dans la table.

Tester : >>> f_Insert("user8346", table_hachage)

9.9930048965724e-05
>>> table_hachage[3514]
['user8346']
>>> f_Insert("user9490", table_hachage)
0.000199860097931448
>>> table_hachage[3514]
['user8346', 'user9490']
>>> f_Insert("user9490", table_hachage)
0.00029979014689717197
>>> table_hachage[3514]
['user8346', 'user9490', 'user9490']

2. Modifier votre fonction pour gérer les doublons et faire en sorte que la table de hachage

n’en contienne pas.

Tester pour vérifier que la gestion des doublons fonctionne correctement.

TD : HACHAGE POLYNOMIAL

4

IV.3. Recherche d’un élément

La position d’un élément dans la table de hachage est donnée par une liste de la forme :

[indice_compartiment, indice_debordement]

… où indice_compartiment donne la position de la valeur recherchée dans la table de
hachage et indice_debordement la position dans la sous-liste où sont enregistrées les
collisions.

1. Écrire la fonction f_Recherche(element, table) qui retourne la position de l’élément

dans la table, s’il existe, et qui retourne None sinon.

Tester : >>> f_Recherche("user8346", table_hachage)

[3514, 0]
>>> f_Recherche("user9490", table_hachage)
[3514, 1]
>>> f_Recherche("abc", table_hachage)
-1

IV.4. Suppression d’un élément

1. Écrire la fonction f_Supprime(element, table) qui supprime un élément de la table,
et qui retourne le facteur de charge après la suppression ou retourne -1 si l’élément n’a
pas été trouvé.

Tester : >>> table_hachage[3514]

['user8346', 'user9490']
>>> f_Supprime("user9490", table_hachage)

 >>> 0.00029979014689717197
>>> table_hachage[3514]
['user8346']
>>> f_Supprime("abs", table_hachage)
-1

IV.5. Distribution du nombre de collisions

1. Écrire une fonction f_RemplirTable(jeu,table) qui insère la totalité des données d’un
jeu dans une table.

2. Remplir trois tables : table_jeu_unique (avec le jeu jeu_unique), table_melange
(avec le jeu de données jeu_melange) et table_regulier (avec le jeu_regulier).

3. Afficher la distribution du nombre de collisions de chaque table avec la fonction

Distribution_Compartiments(nbr_par_case) implémentée dans la librairie
malib_td1. Ici nbr_par_case est la liste des nombres d’élément par compartiment.

3. Commenter les résultats obtenus.

TD : HACHAGE POLYNOMIAL

5

Observation attendue :

IV.6. Gestion du facteur de charge

1. Augmenter le nombre de données de chaque jeu en modifiant la taille des jeux de
données x10.

2. Afficher la distribution des du nombre de collisions de chaque table comme
précédemment.

On observe que les compartiments se remplissent davantage et que comme précédemment
le jeu unique concentre davantage de collisions que les autres jeux :

TD : HACHAGE POLYNOMIAL

6

3. Écrire la fonction f_NbrPremier(val) qui retourne le premier nombre premier
strictement supérieur à la valeur de val.

Tester : >>> f_NbrPremier(256) >>> f_NbrPremier(10000)
 257 10007

4. Écrire la fonction f_Insert_avec_charge(element, table) qui insère un élément en

maintenant un facteur de charge inférieur à 70% (en doublant la capacité n au plus
proche nombre premier supérieur à 2∙nlors d’un dépassement).

5. Écrire une fonction f_RemplirTableAvecCharge(jeu,table) qui insère la totalité des

données d’un jeu dans une table avec gestion du facteur de charge.

6. Refaire l’expérience de remplissage des trois tables en utilisant cette fois-ci la fonction

f_Insert_avec_charge(element, table) et vérifier que la répartition des données
dans les compartiments s’améliore.

Vous pouvez faire la suite si vous avez encore du temps !

IV.7. Complexité des opérations d’insertion

L’utilisation des listes dans nos fonctions d’insertion ne permet pas de prendre en compte
les délais d’insertion pour mesurer la complexité en temps car les listes python sont
optimisées et gérées dynamiquement.

Pour avoir une meilleure image de ce que représente en réalité le temps d’insertion dans la
table de hachage, nous allons nous baser sur le nombre de valeurs déjà enregistrées dans un
compartiment de la table de hachage avant l’insertion d'une nouvelle valeur.

TD : HACHAGE POLYNOMIAL

7

L’objectif est de remplir une table de taille n = 10007 avec 300 000 valeurs issues du jeu
unique, et d’enregistrer le nombre de cases du compartiment où cette valeur sera placée à
chaque tentative d’insertion. Cette métrique nous donnera une idée de la complexité du
temps d’insertion dans la table de hachage car la complexité dépend du temps mis lors de la
vérification des doublons (et plus il y a de cases remplies dans un compartiment, plus cette
vérification sera longue).

1. Créer un jeu de données de 100k valeurs en modifiant la taille du jeu unique.

2. Créer une fonction f_CountRemplirTable(jeu, table) qui permet de remplir la table

en renvoyant deux listes : alpha et count, contenant pour la première la valeur du
facteur de charge à chaque insertion d’un élément, et pour la seconde le nombre de
cases déjà remplies dans le compartiment cible lors d’une insertion.

3. Créer une fonction f_MoyenneMobile(liste, fenetre) qui retourne une liste

contenant les moyennes des valeurs contenues dans la liste, sur une fenêtre de taille
donnée.
Vous pouvez utiliser np.mean(liste[x:x+y]) pour calculer la moyenne des données de
la liste sur l’intervalle [x,x+y].
Vous ferez attention à ce que la liste retournée ait la même longueur que la liste traitée
(ajouter des 0 au début de la liste avant de la retourner).

4. Afficher les courbes de la moyenne mobile (prendre par exemple 1000) du nombre de

cases lors des opérations d’insertion en fonction du taux de charge de la table.

Résultat attendu (sur 300k valeurs) :

Cette courbe semble être en O(1 + ). Pour la comparer à ce qu’on aurait dans le pire des
cas, on va refaire la même mesure mais sur un jeu de donné qui ne contient que des
doublons (pour forcer les collisions).

TD : HACHAGE POLYNOMIAL

8

5. Créer un jeu de la même taille de précédemment, et utiliser la fonction d’insertion qui ne
gère pas les doublons pour remplir la table (afin de forcer le remplissage du
compartiment) en effectuant les mêmes mesures que précédemment. Afficher les
courbes dans les deux cas.

Résultat attendu :

Quelle est la complexité de l’opération d’insertion dans le pire des cas ?

6. La fonction de hachage utilisée garantit-elle une complexité en O(1 + ) sur
l’insertion comme le ferait une fonction universelle ?

